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Equilocality

• Question of equilocality: ”What does it mean to have two objects at the same
position at different times when only relational data is available?”

• Newton and Leibniz knew about this problem.
• Newton proposed ”absolute space” as the solution. Leibniz disagreed.
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Take two pictures of three stars
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• Take tentative coordinates

ra(ti) = ria, ra(tf ) = rfa

such that

||ra(ti)− rb(ti)|| = rab(ti), ||ra(tf )− rb(tf )|| = rab(tf )

• Consider 9D vectors

qi = ⊕ria = (xi1, y
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• Natural distance (Euclidean distance)

d(qi, qf ) =

[
9∑

α=1

(qfα − qiα)
2

]1/2

=

[
3∑

a=1

||rfa − ria||2
]1/2
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• Minimize the distance
d(qi, qBM) = inf

q′
d(qi, q′)

maintaining
||rBM

a − rBM
b || = rab(tf )

• For translations, best matching ⇒ barycenters match (not center of mass).
• We can also do it for rotations.

Hassaan Saleem SUNY, Albany
Best matching principle using Entropic Dynamics 8 / 32



Best Matching Entropic Dynamics and Information Geometry New Techniques New works

1 Best Matching

2 Entropic Dynamics and Information Geometry

3 New Techniques

4 New works

Hassaan Saleem SUNY, Albany
Best matching principle using Entropic Dynamics 9 / 32



Best Matching Entropic Dynamics and Information Geometry New Techniques New works

Entropic Dynamics

• Take N particle system
• xan are ontic variables (n = 1, ..., N).
• ρ(x|t) is the probability of x = xa1, ..., x

a
N at time t.

• Probability changes as

ρ(x′|t′) =
∫
dx P (x′|x, t, t′)ρ(x|t)

• P (x′|x, t, t′) is determined by maximizing the relative entropy (relative to a prior
Q) given some constraints

S[P,Q|constraints] = −P ln P
Q

−
∑

constraints
(Lagrange multipliers)(constraints)
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Entropic Dynamics

• Change in xan

∆̂xan = (x
′a
n + ξ

′a
n )− (xan + ξan) = ∆xan +∆ξan

• ξ
′a
n and ξan are best matching transformations.

• Constraints;
⟨δab∆̂xan∆̂xbn⟩ = κn (No correlation)∑

n

⟨∆xan⟩
∂φ

∂xan
= κ′ (Correlations)
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Entropic Dynamics

• P (x′|x) (conditional probability);

P (x′|x) = 1

Z
exp

[
−
∑
n

αn

2
δab(∆̂x

a
n −∆xan)(∆̂x

b
n −∆xbn)

]

where ∆xan =
α′

αn
δab∂nbφ−∆ξan
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Entropic Dynamics

• Relating αn and α′ with ∆t

α′ =
1

h̄
= constant, αn =

mn

h̄∆t

• A new index
A = (a, n)

• Introduce mass tensor

mAB = mnδab, mAB =
1

mn
δab
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Entropic Dynamics

• Dynamical equation of ρ(x, t) (Fokker Planck equation)

∂tρ(x, t) + ∂A
[
ρ(x, t)vA(x, t)

]
= 0

where
vA = mAB∂Bϕ− ξ̇A, ξ̇A =

∆ξA

∆t
, ϕ = h̄(φ− ln√

ρ)

• Hamiltonian form

∂tρ =
∂H̃

∂ϕ
with H̃[ρ, ϕ] =

1

2

∫
dx ρ mAB

(
∂Aϕ− ξ̇A

)(
∂Bϕ− ξ̇B

)
+ F [ρ]

• The second equation (HJ type equation)

−∂tϕ = mAB(∂Aϕ−mAC ξ̇
C)(∂Bϕ−mBD ξ̇

D) +
∂F [ρ]

∂ρ
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The metric

• Take a statistical manifold S;

• Parameters θi = θ1, ..., θN

• Possible values of variables (Sample space) X
• The metric on S (Fischer-Rao);

gij(θ) =

∫
X
p(x|θ)∂ ln p(x|θ)

∂θi

∂ ln p(x|θ)
∂θj

dx
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Previous work (2016)

• Define joint probability

ρ(x, x′|t, t′) = P (x′|x, t, t′)ρ(x|t)

• Distance between ρ(x′, x|t′ + dt, t) and ρ(x′, x|t′, t) is (long calc.)

dT 2 = G dt2 where G = H̃0[ρ, ϕ] + (ξ independent terms)

and
H̃0[ρ, ϕ] =

∫
dx

[
mAB

2
ρ(∂Aϕ− ξ̇A)(∂Bϕ− ξ̇B) +

h̄2

8ρ
∂Aρ∂

Aρ

]
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Previous work (2016)

• Minimizing G, we get

Mξ̇BM
a = −

∫
dx ρ

∑
n

∂ϕ

∂xan
= −

∫
dx ρ

∂ϕ

∂Xa
= −⟨Pa⟩

where Pa is the momentum of the center of mass.
• This means that

∆ξBM
a = −∆t

⟨Pa⟩
M
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New techniques

• The e-configuration space is;

S =

{
ρ(x) = ρx|

∫
dx ρ(x) = 1

}
• Introduce the cotangent space T ∗S = {(ρx, ϕx)} = (X1x, X2x) = Xαx.
• It has a natural symplectic form

Ω =

∫
dx(∇̃ρx⊗∇̃ϕx−∇̃ϕx⊗∇̃ρx) = −d̃

∫
dxϕxd̃ρ

x︸ ︷︷ ︸
θ

 ⇒ Ωαx,βx′ =

(
0 1
−1 0

)
δxx′

which is closed (d̃Ω = 0) and locally exact (Ω = −d̃θ)
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New techniques

• Symplectic structure should be preserved

LHΩ = 0 ⇒ dρx
dλ

=
∂H̃

∂ϕx
,
dϕx

dλ
= −∂H̃

∂ρx

which are Hamilton’s equations → Hamiltonian flows.
• Normalization preserved i.e.

{N, H̃} = 0 with N = 1−
∫
dx ρx

• The coordinates change as follows;

ρx(ν) = ρx(0), ϕx(ν) = ϕx(0) + ν
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Metric

• Summary of the procedure

gxx′ = A(|ρ|)nxnx′ +
h̄

2ρx
δxx′︸ ︷︷ ︸

S

natural guess−−−−−−−→ gxx′dρxdρx
′
+ gxx

′
dϕxdϕx′︸ ︷︷ ︸

T ∗S+

|ρ|=1−−−→ h̄

2ρx
(dρx)2 +

2ρx

h̄
((dϕx)

2 − nx⟨dϕ⟩)︸ ︷︷ ︸
T ∗S

where ⟨dϕ⟩ =
∫
dx ρxdϕx

• The final metric is (FS metric)

Gαx,βx′dXαxdXβx′
=

h̄

2ρx
(dρx)2 +

2ρx

h̄
((dϕx)

2 − nx⟨dϕ⟩)
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Hamilton-Killing flows

• Define new coordinates;

ψx =
√
ρxe

iϕx/h̄, ψ∗
x =

√
ρxe

−iϕx/h̄

• Under normalization flow

ψx → eiν/h̄ψx, ψ∗
x → e−iν/h̄ψ∗

x

• Metric structure is preserved (Killing flows)

LHG = 0
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Schrodinger equation

• Impose LHG = 0

∂H̃

∂ψx∂ψx′
=

∂H̃

∂ψ∗
x∂ψ

∗
x′

= 0
Norm argument−−−−−−−−−→ H̃ =

∫
dx

∫
dx′ ψ∗

xHxx′ψx′

• LHΩ = 0 → Hamilton’s equations which become

ih̄
dψx

dτ
=

∫
dx Hxx′ψx′ , ih̄

dψ∗
x

dτ
= −

∫
dx ψ∗

x′Hxx′

i.e. the Schrodinger equation (possibly nonlocal Hamiltonian).
• To reproduce Fokker Planck equation

H̃ξ =

∫
dx ψ∗

(
1

2
mAB(ih̄∂A − ξ̇A)(ih̄∂B − ξ̇B) + V (xn)

)
ψ
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Translations

• Metric
ds2 = 4h̄(1− |⟨ψ|ψ′⟩|)

• Take ψ′ = ψ + δψ
ds2 = 2h̄|⟨ψ|δψ⟩|+ Other terms

• ψ on different time slices

ψt+dt = ψt + δξψ ⇒ ds2 = 2h̄|⟨ψ|δξψ⟩|

• where
ih̄|δξψ⟩ = dt Hξ|ψ⟩
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Translations

• Minimize ds2 w.r.t ξ̇a
∂H̃ξ[ψ,ψ

∗]

∂ξ̇a
= 0

where

H̃ξ =

∫
dx ψ∗

∑
n

(
1

2mn
δbc(ih̄∂nb −mnξ̇b)(ih̄∂nc −mnξ̇c) + V (xn)

)
ψ

⇒ ξ̇BM
a = −⟨ψ|Pa|ψ⟩

M
= −⟨Pa⟩

M
⇒ ∆ξBM

a = −∆t
⟨Pa⟩
M
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Rotations

• We now have
xan → xan + iζk(J

k)abx
b

⇒ ξan = iζk(J
k)abx

b (Jk are SO(3) generators)
• The Hamiltonian becomes

Hζ̇ = −1

2
ζ̇kζ̇l⟨Ikl⟩ − ζ̇k

∑
n

⟨(xn × P̂n)
k⟩+ Others

where
Ikl =

∑
n

mn(g
kl||xn||2 − xknx

l
n)

• Minimizing w.r.t ζ̇k (best matching) gives

ζ̇BM
k ⟨Ikl⟩ = −⟨Ll

tot⟩
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Dilations

• For dilations, we have
xan → xan + λ̇xan ⇒ ξ̇an = λ̇xan

• to get the Hamiltonian

Hλ̇ = λ̇2
∑
n

mn

2
⟨||xn||2⟩+ λ̇

∑
n

⟨xn.Pn⟩+ Others

• Minimizing, we get

λ̇BM
∑
n

mn⟨||xn||2⟩ = −
∑
n

⟨xanPna⟩
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Special Conformal Transformations (SCTs)

• For SCT, we have;

xan → xan + 2(xbn l̇b)xan − ||xn||2 l̇a ⇒ ξ̇an = 2(xbn l̇b)x
a
n − ||xn||2 l̇a

• to get the Hamiltonian

Hl̇ =
1

2
l̇2
∑
n

mn⟨||xn||2⟩+ l̇a
∑
n

⟨2(xTn .Pn)xna − ||xn||2Pna⟩+ Others

• Minimizing, we get;

(l̇BM)b
∑
n

mn⟨||xn||4⟩ = −
∑
n

⟨(2xanxbn − ||xn||2gab)Pna⟩
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General Case

• General transformations

xan → xan + ω̇lπ
l
abx

b
n ⇒ ξ̇an = ω̇lπ

l
abx

b
n

• The Hamiltonian is a bit complicated to write here.
• Minimizing, we get;

ω̇BM
k

∑
n

mn⟨X(k)T
n .X(l)

n ⟩ = −
∑
n

⟨X(l)T
n .Pn⟩

where
X(k)

n = πkabx
b
n

Hassaan Saleem SUNY, Albany
Best matching principle using Entropic Dynamics 30 / 32



Best Matching Entropic Dynamics and Information Geometry New Techniques New works

Adding a gauge field

• It will need another constraint;

⟨∆̂xan⟩Aa = κ′′n

• The only significant change

∂nbϕ→ ∂nbϕ− h̄βnAa = Dnbϕ

which implies

∂naψ → ∂naψ − iβnAaψ = Dnaψ
(
βn =

qn
ch̄

)
which further implies

Pnaψ = −ih̄∂naψ → Pnaψ − h̄βnAaψ = Pnaψ
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